热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

中点|升序_算法模板链表

篇首语:本文由编程笔记#小编为大家整理,主要介绍了算法模板-----链表相关的知识,希望对你有一定的参考价值。链表基础知识点null异常

篇首语:本文由编程笔记#小编为大家整理,主要介绍了算法模板-----链表相关的知识,希望对你有一定的参考价值。


链表基础知识点


  • null异常的处理
  • dummy node节点
  • 快慢指针
  • 插入一个节点到排序链表
  • 从一个链表中移除一个节点
  • 反转链表
  • 合并两个链表
  • 找到链表的中间节点

通过下面的练习,大部分链表题都能可以应对。
remove-duplicates-from-sorted-list
remove-duplicates-from-sorted-list-ii
reverse-linked-list
reverse-linked-list-ii
merge-two-sorted-lists
partition-list
sort-list
reorder-list
linked-list-cycle
linked-list-cycle-ii
palindrome-linked-list
copy-list-with-random-pointer


常见题型

remove-duplicates-from-sorted-list



给定一个排序链表,删除所有重复的元素,使每个元素只出现一次


// 递归
ListNode* deleteDuplicates(ListNode* head)
if(head == NULL || head->next == NULL) return head;
head->next = deleteDuplicates(head->next);
return head->val == head->next->val ? head->next : head;
// 非递归
ListNode* deleteDuplicates(ListNode* head)
ListNode *cur = head;
while(cur != NULL && cur->next != NULL)
if(cur->val == cur->next->val)
cur->next = cur->next->next; //跳过重复节点
else
cur = cur->next;


return head;

remove-duplicates-from-sorted-list-ii



给定一个排序链表,删除所有重复的节点,只保留原始链表中没有重复出现的。
思路:链表的头节点可能会被删除,需要定义一个dummy node辅助进行删除过程
dummy node 的使用在面试中很常见


ListNode* deleteDuplicates(ListNode* head)
if(head == NULL || head->next == NULL) return head;

ListNode *dummy = new ListNode(-1); //定义dummy node节点进行辅助
dummy->next = head;
head = dummy;

int temp;
while(head->next != NULL && head->next->next != NULL)
if(head->next->val == head->next->next->val)
temp = head->next->val;
while(head->next != NULL && head->next->val == temp)
// 查找所有相同的节点进行删除
head->next = head->next->next;

else
head = head->next;


return dummy->next;


注意点:


  • A->B->C 删除B => A.next = C
    删除用一个dummy node节点进行辅助(允许头节点改变)
    访问X.next、X.value一定要保证X!=NULL(这个很重要,一定要细心)

reverse-linked-list



反转单链表
思路:用一个prev节点保存前向指针,temp保存后向的临时指针。
反转链表的套路要记住,可能在其他题中会使用


// 迭代
ListNode* reverseList(ListNode* head)
ListNode* pre = NULL;
ListNode* cur = head;
while(cur != NULL)
ListNode *later = cur->next;
cur->next = pre;
pre = cur;
cur = later;

return pre;
// 递归
ListNode* reverseList(ListNode* head)
if(head == NULL || head->next == NULL) return head;

ListNode *h = reverseList(head->next);
head->next->next = head;
head->next = NULL;
return h;

reverse-linked-list-ii



反转从位置m到n的链表&#xff0c;使用一趟扫描完成。(1<&#61;m<&#61;n<&#61;链表长度)
思路&#xff1a;先遍历到m处&#xff0c;反转&#xff0c;再拼接后边的。
需要使用dummy node&#xff0c;可能会改变head


ListNode* reverseBetween(ListNode* head, int m, int n)
if(head &#61;&#61; NULL || head->next &#61;&#61; NULL) return head;
ListNode *dummy &#61; new ListNode(-1);
ListNode *pre &#61; dummy;
dummy->next &#61; head;

for(int i &#61; 0; i pre &#61; pre->next;


ListNode *cur &#61; pre->next; // m-1 从此处开始反转
for(int i &#61; m; i ListNode *temp &#61; cur->next;
cur->next &#61; temp->next;
temp->next &#61; pre->next;
pre->next &#61; temp;

return dummy->next;

merge-two-sorted-lists



将两个升序链表合并为新的升序链表&#xff0c;在原链表上进行操作
思路&#xff1a;定义dummy node&#xff0c;链接各个元素


ListNode* mergeTwoLists(ListNode* l1, ListNode* l2)
if(l1 &#61;&#61; nullptr) return l2;
if(l2 &#61;&#61; nullptr) return l1;

if(l1->val <&#61; l2->val)
l1->next &#61; mergeTwoLists(l1->next, l2);
return l1;
else
l2->next &#61; mergeTwoLists(l1, l2->next);
return l2;

partition-list



分隔链表&#xff0c;使所有小于x的节点出现在大于或等于x的节点之前。
保留两个分区中每个节点的初始相对位置。
思路&#xff1a;将大于等于x的节点&#xff0c;放到另外一个链表中&#xff0c;最后链接这两个链表


ListNode* partition(ListNode* head, int x)
if(!head) return head;

ListNode *beforeNode &#61; new ListNode(-1);
ListNode *before &#61; beforeNode;
ListNode *afterNode &#61; new ListNode(-1);
ListNode *after &#61; afterNode;

while(head !&#61; NULL)
if(head->val before->next &#61; head;
before &#61; before->next;
else
after->next &#61; head;
after &#61; after->next;

head &#61; head->next;

after->next &#61; NULL;
before->next &#61; afterNode->next;
return beforeNode->next;


当头节点不确定的时候需要使用dummy node


sort-list



在O(nlogn)时间复杂度下&#xff0c;常数级空间复杂度下&#xff0c;对链表进行排序(升序)
思路&#xff1a;使用归并排序&#xff0c;找中点进行合并操作


ListNode* sortList(ListNode* head)
if(head &#61;&#61; NULL || head->next &#61;&#61; NULL) return head;

// 使用快慢指针找到中点
ListNode *slow &#61; head;
ListNode *fast &#61; head->next;
while(fast !&#61; NULL && fast->next !&#61; NULL)
slow &#61; slow->next;
fast &#61; fast->next->next;

ListNode *middleNode &#61; slow->next;
slow->next &#61; NULL;

ListNode *left &#61; sortList(head);
ListNode *right &#61; sortList(middleNode);
return mergeSortList(left, right); // 合并
ListNode* mergeSortList(ListNode* left, ListNode* right)
// 升序合并两个序列
ListNode *dummy &#61; new ListNode(-1);
ListNode *cur &#61; dummy;

while(left !&#61; NULL && right !&#61; NULL)
if(left->val val)
cur->next &#61; left;
left &#61; left->next;
else
cur->next &#61; right;
right &#61; right->next;

cur &#61; cur->next;


while(left !&#61; NULL) //将剩余的left接在后边
cur->next &#61; left;
cur &#61; cur->next;
left &#61; left->next;


while(right !&#61; NULL)
// 将剩余的right接在后边
cur->next &#61; right;
cur &#61; cur->next;
right &#61; right->next;


return dummy->next;


注意&#xff1a;


  • 使用快慢指针的时候需要判断fast 及 fast->next 是否为null
  • 递归mergeSort需要断开中间节点
  • 递归返回条件为head &#61; null 或者 head.next &#61; null

reorder-list



给定一个单链表&#xff0c;L: L0->L1->…->Ln-1->Ln&#xff0c;将其重新排序为&#xff1a;L0->Ln->L1->Ln-1…
不能只是单纯改变节点的值&#xff0c;需要进行节点变换
思路&#xff0c;找到中间节点&#xff0c;反转后边部分&#xff0c;然后合并前后两个链表


void reorderList(ListNode* head)
if(head &#61;&#61; nullptr) return;

// 快慢指针找到中点
ListNode *slow &#61; head;
ListNode *fast &#61; head->next;
while(fast !&#61; nullptr && fast->next !&#61; nullptr)
slow &#61; slow->next;
fast &#61; fast->next->next;


ListNode *middleNode &#61; slow->next;
ListNode *right &#61; reverseList(slow->next); //反转后边的链表
slow->next &#61; nullptr;
head &#61; mergeTwoList(head, right);
ListNode *mergeTwoList(ListNode *left, ListNode *right)
// 合并两个链表
ListNode *dummy &#61; new ListNode(-1);
ListNode *cur &#61; dummy;
bool flag &#61; true; // true: left, false: right
while(left !&#61; nullptr && right !&#61; nullptr)
if(flag)
cur->next &#61; left;
left &#61; left->next;
else
cur->next &#61; right;
right &#61; right->next;

flag &#61; !flag;
cur &#61; cur->next;

while(left !&#61; nullptr)
// 拼接left剩余部分
cur->next &#61; left;
cur &#61; cur->next;
left &#61; left->next;

while(right !&#61; nullptr)
//拼接right剩余部分
cur->next &#61; right;
cur &#61; cur->next;
right &#61; right->next;

return dummy->next;
ListNode *reverseList(ListNode *root)
//反转链表
ListNode *pre &#61; nullptr;
ListNode *cur &#61; root;
while(cur !&#61; nullptr)
ListNode *temp &#61; cur->next;
cur->next &#61; pre;
pre &#61; cur;
cur &#61; temp;

return pre;

linked-list-cycle



给定一个链表&#xff0c;判断是否有环
思路&#xff1a;快慢指针&#xff0c;快慢指针相同&#xff0c;则有环。
如果有环&#xff0c;在环内每走一步快慢指针距离会减一


bool hasCycle(ListNode* head)
if(head &#61;&#61; NULL) return false;

ListNode *slow &#61; head;
ListNode *fast &#61; head->next;
while(fast !&#61; NULL && fast->next !&#61; NULL)
if(fast &#61;&#61; slow) return true;
fast &#61; fast->next->next;
slow &#61; slow->next;

return false;

linked-list-cycle-ii



给定一个链表&#xff0c; 判断入环的第一个节点&#xff0c;没有环则返回-1。
证明&#xff1a;
假设链表中环外部分的长度为a&#xff0c;slow进入环内又走了b的距离与fast相遇&#xff0c;此时fast已经走完了环的n圈&#xff0c;因此fast走过的距离为a&#43;n(b&#43;c)&#43;b&#61;a&#43;(n&#43;1)b&#43;nc。
根据题意&#xff0c;fast走过的距离使slow走过距离的2倍。则&#xff1a;
a&#43;(n&#43;1)b&#43;nc&#61;2(a&#43;b) &#61;> a &#61; c&#43;(n-1)(b&#43;c)。
所以当slow与fast相遇时&#xff0c;我们再额外使用一个指针ptr&#xff0c;指向链表头部&#xff0c;随后它与slow每次向后移动一个位置。最终会在入环点相遇。


ListNode* detectCycle(ListNode* head)
if(head &#61;&#61; NULL) return head;

ListNode *fast &#61; head->next;
ListNode *slow &#61; head;
while(fast !&#61; NULL && fast->next !&#61; NULL)
if(fast &#61;&#61; slow)
//第一次相遇&#xff0c;判断有环
//调整slow和fast的步长&#xff0c;等待第二次相遇
slow &#61; head;
fast &#61; fast->next;
while(fast !&#61; slow)
//第二次相遇 入环口
fast &#61; fast->next;
slow &#61; slow->next;

return slow;

fast &#61; fast->next->next;
slow &#61; slow->next;

return NULL;


注意&#xff1a;


  • 指针比较时直接比较指针&#xff0c;不要用值进行比较&#xff0c;链表中可能存在重复值
  • 第一次相遇后&#xff0c;快指针需要从下一个节点开始和头指针一起匀速运动

另一种方式是fast&#61;head, slow&#61;head。

ListNode *detectCycle(ListNode *head)
if(head &#61;&#61; NULL) return head;

ListNode *fast &#61; head;
ListNode *slow &#61; head;
while(fast !&#61; NULL && fast->next !&#61; NULL)
fast &#61; fast->next->next;
slow &#61; slow->next;
if(fast &#61;&#61; slow)
fast &#61; head;
while(fast !&#61; slow)
//第二次相遇就是环的入口
fast &#61; fast->next;
slow &#61; slow->next;

return slow;


return NULL;


两个不同点&#xff1a;


  • fast初始化为head.next 则中点在slow.next
  • fast初始化为head&#xff0c;则中点在slow。
    一般使用fast&#61;head.next较多&#xff0c;这样可以知道中点的上一个节点&#xff0c;可以进行删除操作。

palindrome-linked-list



判断一个链表是否是回文链表
找到中点&#xff0c;反转后边的链表&#xff0c;前后链表进行比较


bool isPalindrome(ListNode* head)
if(head &#61;&#61; NULL) return true;

// 快慢指针找到中点
// 中点是slow->next
ListNode *slow &#61; head, *fast &#61; head->next;
while(fast !&#61; NULL && fast->next !&#61; NULL)
slow &#61; slow->next;
fast &#61; fast->next->next;


ListNode *tail &#61; reverseList(slow->next);
// 断开两个链表
slow->next &#61; NULL;
while(head !&#61; NULL && tail !&#61; NULL)
if(head->val !&#61; tail->val) return false;
head &#61; head->next;
tail &#61; tail->next;

return true;
ListNode *reverseList(ListNode *head)
// 反转链表
if(head &#61;&#61; NULL) return head;
ListNode *pre &#61; NULL;
while(head !&#61; NULL)
ListNode *temp &#61; head->next;
head->next &#61; pre;
pre &#61; head;
head &#61; temp;

return pre;

copy-list-with-random-pointer



给定一个链表&#xff0c;每个节点包含一个额外增加的随机指针&#xff0c;该指针指向链表中的任意节点或空节点&#xff0c;返回这个链表的深拷贝。
思路&#xff1a;用hash表存储指针&#xff0c;复制节点跟在原节点的后边。


Node *copyRandomList(Node* head)
if(head &#61;&#61; NULL) return head;

// 复制节点跟在原节点后边
// 1->1&#39;->2->2&#39;...
Node *cur &#61; head;
while(cur !&#61; NULL)
Node *clone &#61; new Node(cur->val);
clone->next &#61; cur->next;
cur->next &#61; clone;
cur &#61; clone->next;


//处理随机指针
cur &#61; head;
while(cur !&#61; NULL)
cur->next->random &#61; (cur->random !&#61; NULL) ? cur->random->next : NULL;
cur &#61; cur->next->next;


// 分离两个链表
cur &#61; head;
Node *cloneRandom &#61; cur->next;
while(cur !&#61; NULL && cur->next !&#61; NULL)
Node *temp &#61; cur->next;
cur->next &#61; cur->next->next;
cur &#61; temp;

//原始链表头 head
//克隆链表头 cloneRandom
return cloneRandom;

推荐阅读
  • 基于SSM框架的在线考试系统:随机组卷功能详解
    本文深入探讨了基于SSM(Spring, Spring MVC, MyBatis)框架构建的在线考试系统中,随机组卷功能的设计与实现方法。 ... [详细]
  • 双指针法在链表问题中应用广泛,能够高效解决多种经典问题,如合并两个有序链表、合并多个有序链表、查找倒数第k个节点等。本文将详细介绍这些应用场景及其解决方案。 ... [详细]
  • 如何将Python与Excel高效结合:常用操作技巧解析
    本文深入探讨了如何将Python与Excel高效结合,涵盖了一系列实用的操作技巧。文章内容详尽,步骤清晰,注重细节处理,旨在帮助读者掌握Python与Excel之间的无缝对接方法,提升数据处理效率。 ... [详细]
  • 本文基于Java官方文档进行了适当修改,旨在介绍如何实现一个能够同时处理多个客户端请求的服务端程序。在前文中,我们探讨了单客户端访问的服务端实现,而本篇将深入讲解多客户端环境下的服务端设计与实现。 ... [详细]
  • 本文详细介绍了在Luat OS中如何实现C与Lua的混合编程,包括在C环境中运行Lua脚本、封装可被Lua调用的C语言库,以及C与Lua之间的数据交互方法。 ... [详细]
  • 本文详细介绍了 Redis 中的主要数据类型,包括 String、Hash、List、Set、ZSet、Geo 和 HyperLogLog,并提供了每种类型的基本操作命令和应用场景。 ... [详细]
  • 本文详细介绍如何在 Apache 中设置虚拟主机,包括基本配置和高级设置,帮助用户更好地理解和使用虚拟主机功能。 ... [详细]
  • 本文探讨了Python类型注解使用率低下的原因,主要归结于历史背景和投资回报率(ROI)的考量。文章不仅分析了类型注解的实际效用,还回顾了Python类型注解的发展历程。 ... [详细]
  • 函子(Functor)是函数式编程中的一个重要概念,它不仅是一个特殊的容器,还提供了一种优雅的方式来处理值和函数。本文将详细介绍函子的基本概念及其在函数式编程中的应用,包括如何通过函子控制副作用、处理异常以及进行异步操作。 ... [详细]
  • D17:C#设计模式之十六观察者模式(Observer Pattern)【行为型】
    一、引言今天是2017年11月份的最后一天,也就是2017年11月30日,利用今天再写一个模式,争取下个月(也就是12月份& ... [详细]
  • 本文探讨了如何在Python中通过特定的方法,为列表中的交替元素创建递增的模式,这对于数据处理和项目开发具有实际应用价值。 ... [详细]
  • 本文介绍了如何利用OpenCV库进行图像的边缘检测,并通过Canny算法提取图像中的边缘。随后,文章详细说明了如何识别图像中的特定形状(如矩形),并应用四点变换技术对目标区域进行透视校正。 ... [详细]
  • 本文将详细探讨 Python 编程语言中 sys.argv 的使用方法及其重要性。通过实际案例,我们将了解如何在命令行环境中传递参数给 Python 脚本,并分析这些参数是如何被处理和使用的。 ... [详细]
  • feat: Enhances Jest Testing Capabilities with Snapshot Support ... [详细]
  • 在2022年11月2日的AcWing每日编程挑战中,任务是计算一个长度为n的整数序列中的逆序对数量。逆序对是指在序列中,若存在两个下标i和j(i < j),且a[i] > a[j],则称这两个元素构成一个逆序对。本题要求实现一个算法来高效地统计这些逆序对的数量。 ... [详细]
author-avatar
泡乙唐
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有